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Introduction 

Let L be a graded Lie algebra over a field k of characteristic different from 2. 

If L is concentrated in even degrees, that is, if L is a Lie algebra in the ordinary 

sense, its enveloping algebra UL has no zero divisors: this is an easy consequence 

of the PoincarC-Birkhoff-Witt theorem. On the other hand, if L contains a non- 

zero element of odd degree x such that [x, x] = 0, clearly UL has zero divisors. 

Following R. Bprgvad [3], let us say that a graded Lie algebra is ‘torsion-free’ if 

[x, x] #0 for every non-zero x of odd degree, and ‘absolutely torsion-free’ if it re- 

mains torsion-free after field extension to the algebraic closure L of k. Then our 

main result states: 

Theorem. The enveloping algebra UL of an absolutely torsion free graded Lie 
algebra L has no zero divisors. 

We also show examples of torsion-free Lie algebras over the reals whose envelop- 

ing algebras have zero-divisors. 

The proof takes two steps: we first reduce to the case when L is concentrated in 

degrees 1 and 2 with dim L, = dim L, = n < 00 (the ‘(n, n)-quadratic’ case). Next we 

prove the theorem by induction on II, using suitable (non-commutative) localization 

and the fact, due to BDgvad, that a solvable graded Lie algebra has finite global 

dimension if and only if it is absolutely torsion free. 

Our interest in this question grew out from the analogy between regular sequences 

in commutative algebra and ‘inert’ sequences in Lie algebras developed in [l] and 

[5]. As a matter of fact, the reduction to the quadratic case (Proposition 2.1) was 

obtained by S. Halperin and the second author during the preparation of [5]. We 

also wish to acknowledge the kind cooperation of several geometers in Nice, 
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especially A. Galligo and M. Gaetano for assisting our first attempts to find 

counterexamples through MACSYMA, and Ph. Maisonobe for helpful suggestions. 

When this paper was written, Clas Lofwall informed us that Bogvad had obtained 

the main result some time before us: it is only because Rikard kindly allowed us to 

do so that we still publish our paper: since his proof is different - and quite short 

and elegant indeed - we could not do less than reproducing it here as an appendix. 

Finally, since he is somehow responsible for what Rikard did, it is most ap- 

propriate to dedicate this paper to Jan-Erik Roos. 

1. Quadratic Lie algebras 

Let k denote a field characteristic different from 2, and i; be its algebraic closure. 

We assume the reader is familiar with the basic features of graded Lie algebras (e.g. 

[6, $51). We shall denote by ( V> the free Lie algebra generated by the graded vector 

space V, and by { V} the abelian Lie algebra on I/, namely Vendowed with the null 

bracket. 

1x1 will denote the degree of a non-zero (homogenous) element x. 

Definition 1.1 (Bogvad). A graded Lie algebra L is said to be torsion-free if [x, x] #0 

for any non-zero element x of odd degree in L; the algebra is absolutely torsion-free 
if L = L 0, 1; is torsion-free. 

Definition 1.2. A graded Lie algebra L is (n, p)-quadratic if L; = 0 for i # 1,2 and 

dimkL,=n,dim,L2=p, n,p<m. 

Remark 1.3. A (n,p)-quadratic Lie algebra L is nothing but a quadratic map 

4:L, -+L2, with q(x) = [x, x]: indeed [x, y] = +{q(x+ y) - q(x) - q(y)) as usual. 

Note that L, is included in the centre of L and the cocyle of the central extension 

0+{L*}-‘L+{L,}-t0 

can be identified with q E Hom(S2L,, L2) = H2(L,;L2). 

Proposition 1.4. Let L be an absolutely torsion-free (n,p)-quadratic Lie algebra. 
Then there exists a basis x 1, . . . ,x, of L, such that [x1, xl], . . . , [x,,, x,] are linearly in- 
dependent in L2 (and therefore pr n). 

Proof. Let us first prove that p 5 n. For this, we may assume that k = k without loss 

of generality. Consider the quadratic map g:L, +L1 @L, defined by g(x) =x0x, 

and the bracket map [.I: L,@L,+L,. The linear subspace Ker[.] of L1 0 L, has 

codimension less than p, and the affine cone g(L,) has dimension n. Therefore if 

they intersect in a single point, one must have n I codim Ker[ .] up. 
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Now let x,,..., x, be a linearly independent sequence in L,, such that 

Lqt-qlt . . . . [AC,., x,] are linearly independent, and assume (x1, . . . ,x,) is maximal 

with respect to this property. Then if ~<rz, there exists x,+t independent from 

X~t**.rXr, but [X,+tf CAiXi,Xr+t + C ,Iixi] must lie in the linear subspace X of L, 
spanned by [x,,x,], _.., [x,,x,J for all (/zi) in k’: applying this to those sequences 

(Ai) with A, = 0 except for one or two indices, we obtain that [x,+ r, x,, r 1, [x,., r, xi], 

and [X;, Xj] lie in X for all i, j= 1, . . . , r. Thus the subalgebra generated by 

Xlr *a., X r+l is a (T+ 1, v)-quadratic Lie algebra. But this would contradict the first 

part of the argument, since clearly any subalgebra of an absolutely torsion-free Lie 

algebra is absolutely torsion-free. 0 

Remark 1.5. The above statement is false if L is torsion-free, but not absolutely so: 

indeed a (n, I)-quadratic Lie algebra L is essentially a quadratic form on k”, and L 
is torsion-free iff this quadratic form defines 0: thus if k = IR and L is a (n, l)- 

quadratic torsion-free Lie algebra, there exists a basis x1, . . . ,x,,, y of L, with 

Jx;)=l ,lyJ=2, such that [x,,x,J=y, [xj,xj]=O for all i,j=l,...,n, i#j. A basis 

of UL, for all pzn is (x~(,~x,(~)...x~(~~x~-~) where (i(l), . . ..i(k)) runs through 

those sequences of integers such that 21i(l)<i(2)<... <i(k)<n, so that 

dimkLp=2n-1 for pzrz. If UL has no zero divisors, this means that the product 

map UL, @ UL, + ULP+4 is non-singular: by Adam’s Hopf invariant one 

Theorem, this may only occur for n = 1,2,3,4. Indeed in the latter cases the product 

map is isomorphic to the multiplication of the real, complex, quaternions and 

Cayley numbers respectively: therefore UL has zero divisors iff n>4. 

Our next propostion shows that (n, n)-quadratic absolutely torsion-free Lie 

algebras constitute the hard-core of the situation. 

Proposition 1.6. Assume k is infinite. If p > n, any torsion-free (n, p)-quadratic Lie 
algebra is a central extension of a torsion-free (n, n)-quadratic Lie algebra by an 
abelian Lie algebra concentrated in degree 2. 

Proof. Clearly, if L is a quadratic algebra, any linear subspace of L, is a central 

ideal. By induction on p- n, we only need to prove that if p>n, there exists u#O 

in L2 such that L/(u) is torsion-free. But the affine cone q(L,) has dimension n in 

L?, and since k is infinite we can choose u in the complement of q(L,) and one im- 

mediately checks that L/(o) is torsion-free. 0 

We now proceed to study the global dimension of absolutely torsion-free 

quadratic Lie algebras. 

Proposition 1.7. Let L be a (n, n)-quadratic Lie algebra. Then if L is ab- 
solutely torsion-free, one has gl.dim L =n. Moreover, the Yoneda algebra 
Extzi (k, k) is generated by Ext$ (k, k) = L,, and dim Ext$‘(k, k) = n!/p! (n -p)!, 
dim Ext$f (k, k) = 0 if p # q. 
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- - 
Proof. Since Ext&f (k, k)=k@, Ext;: (k, k), we may assume k=i;. 

Now the Koszul construction C*(L) is the tensor product of the polynomial 

algebra on the suspension of the dual of L, and the exterior algebra on the suspen- 

sion of the dual of L,, and the differential is dual to the bracket map: 

d=‘[~]:SL+P(.sL;). 

Letyl,..., y, be a basis of L2: the n quadratic equations d(yi) = 0, where (yl) is the 

basis dual to (y;), define 0 in the n-dimensional affine space L, , therefore by stan- 

dard intersection theory the ring S(sL; )/(d(sLi)) is a complete intersection and the 

ideal (d&L;)) is regular: thus the cohomology of the Koszul complex is: 

H*(C*(L)) = Ext;; (k, k) = S(sL;)/(d(sL;)) 

and the latter is an artinian local k-algebra whose Hilbert polynomial is 

c dimkExtP;f (k, k) tP = (1 + t)” 0 
D 

We now give a proof of Bogvad’s theorem in the particular case we shall need, 

namely the case of quadratic Lie algebras. 

Proposition 1.8. Let L be a (n,p)-quadratic Lie algebra. Then L is absolutely torsion 
free iff gl.dim L is finite, and then gl.dim L =dim L2 =p, 

Proof. Again we may assume k algebraically closed: if L is not torsion-free, it con- 

tains an abelian subalgebra on a single generator of odd degree, which has infinite 

global dimension: therefore if L has finite global dimension, it is absolutely torsion- 

free. Conversely, if L is torsion-free, there is a central extension: 

where I/ is included in L2 and L/(V) is (n, n)-quadratic and absolutely torsion-free. 

By 1.7, one has gl.dimL/(V) = n; on the other hand, one has gl.dim{ V} = dimk 

V=p - n since { V} is evenly graded abelian. By the Hochschild-Serre spectral se- 

quence, gl.dim L = gl.dim( V} + gl.dim L/( V) =p.) 0 

Remarks 1.9. If k = Q, a quadratic Lie algebra L of finite global dimension can be 

thought of as a special instance of a coformal elliptic space (with homotopy Euler 

characteristic n -p<O). S. Halperin’s results [4] provide alternative proofs of 1.7 

and 1.8 in this case. Note that if n =p, the space is both coformal and formal - in 

fact ‘hyperformal’. 
Quadratic Lie algebras also appear in the context of local algebra: if R is a 

noetherian local ring with residue field k, the Yoneda algebra Ext,(k, k) is the 
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enveloping algebra of a graded Lie algebra and the latter is quadratic iff R is a com- 

plete intersection: see [8] for details. 

Finally, for n > 1 the classification of (n, n)-quadratic Lie algebras, generated in 

degree 1, is equivalent to classifying n-dimensional linear families of quadrics in 

projective (n - 1)-space, and absolute torsion-freeness corresponds to the absence of 

base-point in the algebraic closure (for n = 1 the classification is trivial: there only 

is the free Lie algebra on one generator, which is torsion-free); if k = C, there is a 

single isomorphism class of (2,2)-quadratic torsion free Lie algebra (namely the pro- 

duct (x, ) x (~2) of two free Lie algebras on a single generator of degree l), which 

corresponds to a non-singular involution on the projective line (if k = I?, there are 

two such Lie algebras, according to whether the double points of the involution are 

real or not). For n = 3, k = R or C), one can use C.T.C. Wall’s classification of nets 

of tonics [9]: using his notation, the only types without base-points are A,B,D,E, 

and one can easily check that over C any (3,3)-quadratic torsion-free Lie algebra 

is isomorphic to either L(b) for some b in C or to (x,) x (x2) x (x3), where L(b) 

has the following presentation: 

~(b)=(X,,X2,X3)/([X,,X11- [x3,x3l,hx21, [X,,X31-~~2,X2l+b[X~,X~I) 

Moreover L(b) = L(b’) if b2 = bf2, and L(b) corresponds to Wall’s type A (resp. 

B, D) for b2 #O, 1 (resp. b2 = 1, b2 = 0), while (x, > x (x2) x (x3 > corresponds to 

type E. 

2. Proof of the theorem 

From now on we assume that the ground field k is algebraically closed. We first 

show that our theorem is true if it is true for (n, n)-quadratic Lie algebras. 

Proposition 2.1. The following statements are equivalent: 
(i) The enveloping algebra of a torsion-free Lie algebra has no zero divisors. 
(ii) The enveloping algebra of a torsion-free Lie algebra concentrated in degrees 

1 and 2 has no zero divisors. 
(iii) The enveloping algebra of a torsion-free (n, n)-quadratic Lie algebra has no 

zero divisors. 

Proof. Clearly only the implications (iii) * (ii) * (i) require proofs. 

(ii) * (i). Let L be a torsion-free Lie algebra. We define a filtration on UL by set- 

ting the odd (resp. even) degree components of L in filtration 1 (resp. 2). The 

(bi)graded algebra associated to this filtration is E’UL = UL*, where the Lie 

algebra L # is defined by L,#= Lodd, L2#= L,,,,, L,# = 0 for i# 1,2, and the restric- 

tion to Lp @L,# of the bracket of L# is equal to the restriction to Lodd@Lodd of 

the bracket of L, and zero otherwise. Clearly L# is torsion free iff L is so, and if 

E’UL has no zero divisors, neither does UL. 
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(iii) * (ii). Let us first observe that a Lie algebra L is torsion-free (resp. UL has 

no zero divisors) iff this property holds for all subalgebras of finite type. Thus we 

can replace ‘concentrated in degrees 1 and 2’ by ‘(n,p)-quadratic’ in (ii). Now by 

1.6, any torsion-free (n,p)-quadratic Lie algebra L is a central extension of a 

torsion-free (n, n)-quadratic algebra by an abelian algebra {V} concentrated in 

degree 2. Filtering by the powers of the ideal { V} yields as associated graded algebra 

the direct product { V} x L/(V), whose enveloping algebra is the tensor product of 

the polynomial algebra on V and U(L/V): if (iii) holds, the latter has no zero 

divisors, so neither does UL. 0 

Thus we are left to prove (iii): since (iii) holds for n = 1 (the enveloping algebra 

of a free Lie algebra on one generator is the polynomial algebra on one generator, 

which has no zero divisors), we shall prove (iii) by induction on n. Let L be a 

torsion-free (n, n)-quadratic Lie algebra, and let x1, . . . ,x, be a basis of L, such that 

[Xl,Xll, **.> [x,, x,,] is a basis of L, (see 1.4). Let L(n - 1) be the subalgebra of L 
generated by x1, . . . ,x,_ 1 and LZ: this is an ideal of L with quotient {k . x,), 

therefore every element of UL can be uniquely written a+ bx,, with a and b in 

UL(n - 1). By induction hypothesis, UL(n - 1) has no zero divisors. Assume that UL 
admits a zero divisor z = P+ Qx,, with P and Q in UL(n - 1); note that Q#O. In 

order to derive a contradiction, we need to be able to invert Q: to this end we now 

recall the necessary notions of non-commutative localisation. 

Definition 2.2. Let A be a ring and SCA be a multiplicative subset of A. One says 

that S is a (left) Ore system if the following conditions hold: 

(01) VQEA, VSES, AsnSa#{o}. 

(02) S contains no zero divisors. 

Then one has (cf. e.g. [2, $11): 

Proposition 2.3. Let S be a Ore system in the ring A. Then A admits a ring of left 
fractions S ’ A, and the natural map i: A-+ S ‘A is injective and flat. 0 

Remark. A flat localization S- ‘A exists under a milder hypothesis than (02), see 

[7,ChII,§l], but i is no longer injective. 

We can now state: 

Proposition 2.4. Let L be a torsion-free (n, n)-quadratic Lie algebra and 
z = P-t Qx,, be a zero divisor in UL as above. Then the multiplicative subset S of 
UL generated by Q and L2 is a Ore system in UL. 

Proof. Observe that the elements of S commute with one another since L, is in the 

centre of L, and S contains no zero divisors by induction hypothesis: thus condition 
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(02) is satisfied. To prove (Ol), assume there exists a in UL and s in S such that 

UL.sflS.a={O}. Set lal=p and isl=q. The Poincare series of UL is 

(1 +t)“/(l AZ)“= l/(1 -t)“, while S contains UL, whose Poincare series is 

l/( 1 - 12)n. The relation UL .s fl S. a = { 0} implies the following coefficient-wise in- 

equality between formal series 

tP/(l -t)” + tq/(l - ?)“-% l/(1 -z)“. 

Comparing the coefficients of tj’p+9 yields 

(j+q+n- l)!/(j+q)!+((j+p)/2+n- l)!((j+p)/2)! 

s(j+p+q+n-l)!/(j+p+q)! 

for all j such that j+p is even. When j- 03, the left-hand side is equivalent to 

(1+ l/2”_977 while the right-hand side is equivalent to j”-‘, a 

contradiction. 0 

We now proceed to the homological part of the proof. 

Lemma 2.5. Let L and z as in 2.4. Let z = Q-‘zES’ UL. Then the multiplication 
by 2 is an acyclic differential on S- ’ UL. 

Proof. Since i: UL-,S’UL is injective, we shall identify UL with i(UL). Next 

[ UL(n - I), x,,] c UL(n - l), therefore if BE UL(n - l), there exists CE UL(n - 1) 

such that x,,B= Bx,, + C. Now let z’= P’+x,,Q’ be an element in UL such that 

zz’=O. We can write: 

(P+Qx,)(P’+x,Q’)=O*(QP’-PQ’)x,=O*P’=Q-’PQ’. 

Hence z’=(Qp’P+x,,)Q’=2Q’, and ZZ’=ZZQ’=O* z2=0. 0 

Let Sz be the exterior algebra kOk.2; by 2.5, Q is a subalgebra of S- 'UL, and 

Extg(k, S ’ UL) = 0 for m > 0. 

Lemma 2.6. Let M be a S- ’ UL-module. One has Extg(k, M) = 0 for m > 0. 

Proof. Let us consider the change of rings spectral sequence: 

EF q = Ext$ I uL (Ext; (k, S- ’ UL), M) * ExtP,+ 9(k, M). 

By 2.5, this spectral sequence is trivial and Ext$(k, M) = Exts*_lur.(z.Sp’ L/L, M). 
Since S- ’ UL is (IL-flat, Ext *- s I&V, M) = Ext& (N, M) for all S ’ UL-modules 

M and N. On the other hand, by 1.8 we know that Ext’& (A’, M) = 0 for m > n since 

UL is torsion-free. Hence Extg (k, M) = 0 for m > n. But Ext$ (k, M) = Ker z/Im Z is 

independent of m for m >0 and thus Extg (k, M) = 0 for all m >O. 0 

We are now ready to end up our proof of the theorem: 
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Theorem 2.7. Let L be an absolutely torsion-free Lie algebra. Then UL has no zero 
divisors. 

Proof. Let L and z be as above; let us consider Z. S- ’ .z, with the S- ’ UL-structure 
defined by Va, b E S- ’ CJL, a. (zbz) = ZabZ; the action of Z is trivial, therefore 
z.S-’ UL.Z=O by 2.6. But this means that S’ UL.ZCZ.S-’ UL by 2.5, and thus 
that the multiplication by 2 is trivial on the left ideal S-’ UL.2: again by 2.6 we get 
S-’ UL.z=O, i.e. z=O, the contradiction we sought for. q 

We conclude this paper with R. Bogvad’s proof: let L be any torsion-free 
quadratic Lie algebra over an algebraically closed field k. Let a, b be in UL with 
a’b=O, let M= UL/UL.a, and let E* be a finite UL-free resolution of M, which 
does exist since gl.dim UL < 00. Let @ be the fraction field of the polynomial algebra 
UL,: since UL is a free UL,-module (side is irrelevant since UL2 is central), no ele- 
ment of UL2 is a zero divisor in UL, and E*QuL2 @ is a UL@,, @-free resolu- 
tion of MO, @. Hence x~(E*)=x~~(E,).~~~,(ULO,,~ @)=di&(M@, CD), 
where x denotes the Euler characteristic. But dimO(M@,i CD) r dim,(UL @,f> @), 
therefore x (iL(E*)=O or 1. 

If xuL (E,) = 0, then dim, (MOuL, @> =O, which means that there exists 
SE UL,fl UL,a, s#O: then s.b=O, hence b=O. 

If xuL (E*)= 1, then dim,(UL@,,, @)=dimQ(M@.,+ @), therefore UL.a@,,? @= 
0: there must exist s E UL, with s.a=O, hence a = 0. 0 
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